ECMWF Meteorological Forecast

Medium Range predictions of extreme events

Paul Smith

Paul.smith@ecmwf.int

ECMWF operational forecasting system

- High resolution deterministic forecast (HRES):
 - twice a day ~9 km, 137-level, to 10 days ahead
- Ensemble forecast (ENS):
 - twice a day, ~18 km 91-level, to 15 days ahead
 - 50 perturbed members (account for initial and model uncertainties)
 - Monday/Thursday 00 UTC extended to 46 days ahead (~36km)
- Ocean waves: twice a day
 - Global: 10 days ahead at 14 km (fully coupled)
 - Global: 10 days ahead at 11 km
 - Ensemble: 15 days ahead at 28 km (then 55km for 46 days)
- Seasonal forecast: once a month
 - 51 members, 80 km 91 levels, to 7 months ahead

Increasingly skillful forecasts

Forecast Products

- To assist forecasters
- Summarise information in HRES and ENS
- Represent uncertainty
- Broad-scale evolution out to 15 days, month, season
- Highlight potential for severe weather few days ahead
- Allow you to generate tailored products for specific applications

Ensemble products

Quantiles as maps (ecCharts)

Point forecasts: timeseries (meteogram)

15-day meteogram
Summary of ENS
members

Complement to the 10-day meteogram

Fields for days 1-10 interpolated to day 10-15 grid

ENS Meteogram Reading, United Kingdom 51.39°N 0.83°W (EPS land point) 51 m Extended Range Forecast based on ENS distribution Sunday 7 June 2015 00 UTC Daily mean of Total Cloud Cover (okta) Total Precipitation (mm/24h) M-Climate of the distribution of 10m Wind Direction Daily Distribution of 10m Wind Direction Daily mean of 10m Wind Speed (m/s) 2m min/max Temperature (°C) reduced to 51 m (station height) from 96 m (T319) 25 -Mon 8 Tue 9 Wed10 Thu11 Fri12 Sat13 Sun14 Mon15 Tue16 Wed17 Thu18 Fri19 Sat20 Sun21 M-Climate: this stands for Model Climate. It is a function of lead time, date (+/-15days), and model

version. It is derived by rerunning a 11 member

ensemble over the last 20 years twice a week (1980 realisations). M-Climate is always from the same model version as the displayed ENS data.

Extreme forecast index (EFI)

Measures the distance between the ENS cumulative distribution and the model climate distribution

Ranges from -1 (all members break climate minimum records) to +1 (all beyond model climate records)

Indicates places where the ENS distribution is towards the extreme of the climate distribution

New Longer Range products for the EFI

- Because ensemble spreads increases with lead time, getting strong signals of extreme weather beyond day 10 is difficult and rare (example plots are shown below)
- Therefore EFI maps for Day 10-15 often look empty, especially for precipitation.
- Need to consider lower EFI values we plot also contours for EFI values of +0.1 and -0.1

So how might small magnitude EFI values be interpreted?

Example cdf profiles for day 10-15 precipitation

Various EFI values for extreme weather

- 10 metre wind gust
- 10 metre wind speed
- 2 metre temperature
- Convective available potential energy
- Convective available potential energy shear
- Minimum temperature at 2 metres
- Maximum temperature at 2 metres
- Snowfall index (SFI) accumulation
- Total precipitation index (TPI) accumulation

Other variables were we don't do EFI e.g.

- Precipitation type (including freezing rain
- Visibility

Paris Flooding

EFI for severe convection

Based on CAPE and shear More details in Newsletter

From Ivan Tsonevsky

Convective Events over Europe

Convective events of Europe

Summary

- Given a flavour of what ECMWF can offer
- Other products in development (see poster)
- Look forward to seeing what might of use for the case studies

